El Machine Learning (ML), son algoritmos informáticos que mejoran automáticamente, a través de patrones y desviaciones de datos.
Su uso adecuado puede generar un impacto positivo en las empresas en forma de ahorro de tiempo y dinero.
Muchos expertos consideran al ML una parte de la Inteligencia Artificial. Sus algoritmos construyen un modelo matemático, basado en datos de muestra, que hacen predicciones o toman decisiones sin estar explícitamente programados para ello.
Recomendaciones
En este contexto, Cloudera, la empresa de la Enterprise Data Cloud, presenta un decálogo de recomendaciones con el fin de hacer más eficiente el uso del Machine Learning:
1. Adopción de un enfoque holístico: Es necesario considerar el aprendizaje automático como una parte integral de la estrategia de empresa.
Ejecutándolo junto a los entornos, procesos, aplicaciones y flujos de trabajo tecnológicos existentes se obtienen mejores resultados.
2. Ensayo y error: Los modelos y algoritmos de ML tienen una base científica, pero no siempre generan resultados exactos. Es necesario realizar varias pruebas hasta alcanzar el objetivo deseado.
3. Construcción de un equipo multidisciplinario: Los miembros de la plantilla no deben estar encajonados en una posición.
4. Iterar rápidamente, optimizar más tarde: Los científicos de datos deben ser capaces de utilizar las herramientas que deseen y tener la libertad de iterar rápidamente.
5. Elegir la tecnología adecuada para mejorar el ciclo de vida: Es fundamental escoger una plataforma que dé prioridad a la colaboración holística y agilice el flujo de trabajo de ML.
Hay que tener cuidado con las soluciones puntuales y con la caja negra.
6. Adaptar la estructura de la organización al ML: En algunas empresas parece haber un muro entre la experimentación y la producción a gran escala.
Solo haciendo la configuración de la empresa más flexible para la adopción del aprendizaje automático, es posible derribar esa frontera e incluir el desarrollo, la producción y el mantenimiento del ML.
7. Proteger la integridad de los modelos: A medida que los datos subyacentes cambian y se desplazan debido a que sus propios modelos tienen un impacto en los datos, estos deben actualizarse y mejorarse.
8. Cerrar la brecha de habilidades: Las empresas deben buscar candidatos que tengan las competencias básicas necesarias para realizar las tareas más importantes.
9. Tratamiento de los modelos de producción como software vivo: Para proteger los modelos de producción es necesario tener la capacidad de mantenerlos seguros.
10. Comprensión y cumplimiento de las obligaciones éticas: Las compañías deben asegurarse de tener el consentimiento de los clientes, y de otras partes interesadas, para aplicar los datos necesarios en un modelo de aprendizaje automático.